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Abstract

Title : The synthesis of the motion capture data
Author : Tomáš Sako
Advisor : RNDr. Stanislav Stanek

The introduction of this work deals with the most widely used methods
of motion capture data synthesis. Next we present our new method based
on dual quaternions, which should speed up the algorithm of data synthesis
and we implement mentioned method and compare it with another in our
software product (Motion Blender). As the result, we get the comparison
of efficiency, speed and reliability of those algorithms. We upgrade classical
Registration curves algorithm by using dual quaternions and get even more
effective algorithm that preserves realism of human motion. In the end, we
describe the structure, features and usability of the program.

Keywords : motion capture, motion blending, dual quaternions, registra-
tion curves, motion synthesis
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Abstrakt

Názov : Syntéza nasńımaných dát pohybu
Autor : Tomáš Sako
Dipl. vedúci : RNDr. Stanislav Stanek

Úvod tejto práce pojednáva o najpouž́ıvaneǰśıch a najrozš́ıreneǰśıch metódach
syntézy nasńımaných dát pohybu. Prezentujeme tu našu novú metódu založenú
na duálnych quaterniónoch, ktorá urýcȟluje algoritmus syntézy dát a následne
ho porovnávame s inými metódami vo vlastnom programe (Motion Blender).
Ide o algoritmus registračných kriviek, ktorý sme doplnili o zmienené duálne
quaternióny a źıskali sme efekt́ıvneǰśı algoritmus zachovávajúci hodnover-
nosť ľudského pohybu. Výsledkom práce je porovnanie efektivity, rýchlosti
a spǒlahlivosti algoritmu. V záverečnej časti práce je poṕısaná štruktúra,
vlastnosti a použitělnosť nášho programu.

Kľúčové slová : motion capture, motion blending, dual quaternions, reg-
istration curves, motion synthesis
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1 Introduction

It is very difficult to animate human motion. The reason is that not only the
motion itself is complicated but also our familiarity with this kind of motion
is very huge. That means that we are very sensitive to even small artifacts
or errors in human motion, because we see moving people each day for many
times. Motion capture is the technology that enables us to get an auxiliary
realistic data of human motion performed by the actor. Unfortunately, we
often need to make some changes to the captured data in order to get exactly
what we want. Studios equipped with motion capture technology are very
expensive and therefore we want to be able to edit our data without the loss
of fidelity. In recent years, there have been many approaches how to manipu-
late captured data in order to facilitate and speed up the work of animators.
Many problems have been solved, not only editing of data, but also realistic
joining motions together and parametrizing of motions (i.e. we can control
the strength and target of the punch or set trajectory of walking person).
My thesis deals with the second problem mentioned, that means realistic
synthesis (join) of captured human motions. It is called motion blending.
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2 Basis of Motion Representation

Our figure in motion is represented as the skeleton consisting of joints and
bones which connect two joints. Bones are rigid and they can not bend or
change their length as in the real world. Joints represent the flexible parts
of human body. We keep joints in the hierarchy of tree, because it is eas-
ily represented in computers. Each joint has one parent (except the root)
and joint’s position is given relatively to coordinates of its parent. This is
called the offset. Main joint which does not have parent is called root, it
mostly represents the pelvis or spine and its position is defined relatively to
the world coordinate system. All body parts are represented at the picture
below.

Figure 1: The picture of skeleton

Each motion is represented as the multidimensional function characterizing
the skeleton (position and orientation of each joint) at each point in time :

M(t) =
(
p(t), q1(t), ..., qn(t)

)
,

where p is the position of root in world coordinate system and qi is the
orientation of the i-th joint relative to its parent’s coordinate system. These
orientations are mostly represented by unit quaternions (also Euler angles
possible).

As we know, each motion is defined as a set of frames, where number of
frames depends on frame rate. In our motion are frames represented by skele-
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ton configurations (poses) M(t1),..M(tj) corresponding to regular sampling
of our motion M(t). Of course we do not have all frames needed to build
particular motion. Frames, that are measured from motion capture, are then
interpolated in order to generate in between frames that are missing. We use
linear interpolation to generate root positions and spherical linear interpo-
lation (slerp) to generate intermediate joint orientations. Another problem
is that human body is not rigid and therefore rough captured data must be
pre-processed before their usage in particular blending algorithm. The ap-
proximation to the sequence of skeletal poses is made by specific software,
but this problem exceeds the submission of this work.

Motion Constraints

Motion constraint is the limitation of some part of skeleton, it is the property
that must be fulfilled by motion in particular period. There are different
types of constraints i.e. physical constraints (like constraint on head which
can not rotate an auxiliary angle) or properties describing the meaning of
motion (like hurdles where athlete must jump over each obstacle along the
track). While constraints represent the additional information about some
period of motion, they can be valid in one frame, many frames or in the
whole motion. It is very important to have the possibility to set an auxiliary
constraint in motion blending software. It allows us to have great control
over the motion and to quickly change particular motion as we like.
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2.1 The Summary of Motion Synthesis Techniques

Standard classification of these techniques is : manual methods, physically-
based methods and data driven methods.

Manual Synthesis

This is the oldest technique, where the animator specifies individual DOFs
(degrees of freedom) and joint torques at some points in time, which are
called keyframes. Other data in between keyframes are computed by simple
interpolation methods. The main disadvantage is that animator has to create
the frames manually, which is very tedious work. On the other hand he has
the full control over motion. The more details the animator designs, the more
convincing motion he gets. Many poses of the character are needed, while 24
frames per second is considered as optimal frame rate. There is also another
technique which uses algorithms, that procedurally replicate motions. It is
the way, how to manually create motions at once. Perlin[3] and Perlin and
Goldberg[9] have shown that many motions could be generated with simple
and efficient algorithms. Disadvantage is that the most of edited motions
have lost the realism.

Physically-based Synthesis

As the physical laws influence the motion of humans, there are several ap-
proaches which implement such laws into motion synthesis. What we need
is mass distribution for the entire body, the joint torques and knowledge of
Newton’s laws. We can find average mass distribution in biomechanics[10].
Problem with torques solved Hodgins et al.[11] by using finite state machines
and proportional-derivative servos. Also Wooten and Hodgins[12, 13] worked
with these methods, they try to generate gymnastic motions. Faloutsos et
al.[14] attended to motions for preserving balance. Disadvantage of this ap-
proach is that controller design is difficult to perform and such controller
can produce only severe motions. On the other hand, when it is generated,
we can change the input circumstances and produce particular motion like
Laszlo et al.[15] did. Hodgins and Pollard[16] addapted a controller to a
new body by computing controller parameters with scaling and consecutive
tuning the results using simulated annealing. Faloutsos et al.[17] used sup-
port vector machines to compose controllers for different actions. Another
method uses a few keyframes and adapts physical laws to motion resulting
from simple interpolation. Liu and Popovic[18] worked with ballistic motions
and used spline interpolation. Character situated in the air obeyed Newton’s
laws and on the ground model of momentum transfer. Fang and Pollard[19]
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did it more effective, when they have shown that physical constraints in the
form of aggregate force and torque can be differentiated in time linear in the
number of DOFs.
Sometimes, physical approach generate motions with lack of personality. Neff
and Fiume[20] implemented the fact that opposing muscle forces varied the
amount of tension. Safonova et al.[21] extracted the main poses, which he
used to filter the space of possible character postures. However, there is still
no physically simulated method that would provide an arbitrary motion that
would be realistic.

Data Driven Synthesis

Invention of motion capture technology has brought realistic example mo-
tions of high fidelity, which are used as raw material in data-driven synthesis
algorithms. However, example motions can be generated by keyframing or
physical simulation. One possibility is signal processing operations apllied to
each DOF. Bruderlin and Williams[22] introduced some operations like mul-
tiresolution filtering, waveshaping and adding smooth displacement maps.
Witkin and Popovic[23] proposed motion warping and Gleicher[24] used dis-
placement mapping to have an interactive control over character’s trajectory.
Problem of these algorithms is that they fail when more body parts must be
adjusted simultaneously. Gleicher[25,26], Lee and Shin[27] and Shin et al.[28]
used optimization to coherently adjust DOFs.
There were also some approaches to have a full control of the motion’s style
and aesthetics. Unuma et al.[29] worked with cyclic motions and linearly
combined the Fourier coefficients of DOFs and found out that it is possible
to control the emotions in human movement. Chi et al.[30] proposed La-
ban Movement Analysis to control gestures by controling their content. Tak
et al.[31] checked the position of the body’s zero moment point to preserve
physical validity. Popovic and Witkin[32] built physically-based framework
for editing, that mapped original motion onto a simplier model. Zordan and
Hodgins[33] fitted captured data onto physical simulation by proportional-
derivative servos to get joint torques that caused individual joint angles.
Then it was possible to add some new forces into the scene and to track
motion again.
In this category belong also motion blending, motion graphs and parameter-
izing motions, which will be closely characterized in the next section.
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Motion Graphs

Motion graph is very useful tool when we want to create a motion with long
duration. It allows us to set a sequence of the orders for the skeleton and
create a motion satisfying our specification. We can also reorder the sequence
of orders and by using motion graph, we are able to generate new motion
very quickly.
Briefly, it is automatic creation of transition motions that seamlessly join
different parts of the data. The result is a motion graph where edges rep-
resent motion clips and nodes represent generated transitions. Synthesizing
motion with a motion graph means to select a sequence of edges, or walk on
the graph.

The difficulty of constructing a transition depends on what types of mo-
tions will be joined. If two motions are similar then simple interpolation can
create a transition. The main task is to find motions, that are reasonably
similar and then blend the motions at these points to create transitions.

Parameterizing Motion

Parameterization of motion allows us more effective control over various as-
pects of motion such as speed, turning angle, and style. It is a tool with
which we can edit, setup and recreate a brand new motion of the same fi-
delity as the initial motion, without the usage of motion capture equipment.
For example :

We have motion whose trajectory is described at the picture below. We
parametrize it as follows :

Since a motion of constant speed and turning angle traces a circular trajec-
tory, we approximate the root trajectory p of a motion as a circular arc a
that best fits the projected trajectory p̃ on the floor.

[1] Let the circular arc a subtend an angle Θ starting from a point a0 on
the circle of radius r centered at o. We find the circular arc a by least-squares
fitting which minimizes the distance between p̃ and a as follows:

minimize
∑Nf

i=1[p̃i − a(Θi, o, a0, Θ)]2 over o, a0, Θ

where p̃i is the point of the projected root trajectory at the ith frame, a(Θi)
is the point on a after rotating a0 by the angle (i× Θ

(Nf−1)
) about o, and Nf

is the number of the frames. [1] Let l and T be the length of the arc a and
the duration of the motion, respectively. Then, the speed of the motion is
l
T

, and its turning angle is Θ
T

.
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Figure 2: Circular arc as an approximation of the root trajectory [1]

Motion Blending

[1] Basic idea is to generate a motion by blending a set of example motion
clips captured from live human motions. First, we need to provide a time-
warping scheme to align the motion clips of a wide range of speed. Second,
the conventional methods using quaternions (or Euler angles) are required to
preprocess the example motions for effective motion blending to ensure that
similar poses use similar joint angle representation. When the target char-
acter has a different size and proportions from an actor, a blended motion
needs to be adapted to the target character.

Retargeting of Motion

Motion retargeting is modifying a motion in order to align it into the proper
coordinates of the scene. This is done by blending algorithms and also by
animators who want to apply motion to different roles of actors. It means to
transform a motion created for one figure to another with the same structure
but different segment lengths. Shin et al. [6] suggested an importance-based
approach for on-line motion retargeting. They provided the notion of dy-
namic importance of an end-effector and introduced a fast, robust inverse
kinematics solver to realize the important aspect of the end-effector accord-
ing to its importance value.

Weight Blending

As we have the parameters, we determine the weights of the example mo-
tions. Then timewarping is performed to synchronize the example motions.
Next, we compute the target motion by blending them with respect to their
weights. In the end, having a trajectory and blended postures, we are able
to animate the desired locomotion of character, who follows the trajectory
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through motion retargeting by using the resulting postures.
Weight computation :
Effective method of this computation is multidimensional scattered data in-
terpolation technique suggested by Sloan et al. [7]. By using cardinal basis
functions, Sloan et al. reformulated this scheme to get a more efficient inter-
polation method. The original version interpolates each degree of freedom
per frame, however they computed the weights of the example motions for
the given parameter vector and blended them with respect to these weights.

For the vector p of parameters, the weight wi(p) of the ith example motion
is defined as

wi(p) =
∑Np

l=0 ailAl(p) +
∑Ne

i=1 rijRj(p)

where Al(p) and ail are the linear basis functions and their coefficients, Rj(p)
and rij are the radial basis functions and their coefficients, respectively.

Posture Blending with Vector Spaces

To interpolate two unit quaternions we use slerp (spherical linear interpola-
tion). Lee and Shin [4] proposed a general framework for constructing the
time-domain filters for orientation data. Their scheme satisfies such impor-
tant filter properties as coordinate-invariance, time-invariance, and symme-
try. Buss and Fillmore [5] provided a method for computing the weighted
spherical averages of sample points on d-dimensional sphere based on least
squares minimization.
There are many algorithms and mathematical approaches which solve the
root and joint blending. However, orientation data such as root orientations
and joint angles are not so easy to blend. Because of the non-linearity of the
orientation space, this method can not be applied directly.
The main idea for blending orientations is transforming the quaternions into
their analogues in a vector space with respect to a reference orientation,
computing their weighted sum, and then transforming the result back to the
orientation space. This ensures us much smaller errors and artifacts in the
resulting motion. The connection between quaternions and vectors are the
logarithm and exponential maps.
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2.2 Registration Curves

In this section, we will describe method from the authors Lucas Kovar and
Michael Gleicher[2]. We decided to implement it because of its effectivity
and relative simplicity.

A registration curve is an automatically constructed data structure that en-
capsulates relationships involving the timing, local coordinate frame, and
constraint states of an arbitrary number of input motions. These relation-
ships are used to improve the quality of blended motion and allow blends
that were previously beyond the reach of automatic methods.
A registration curve consists of a timewarp curve, a coordinate alignment
curve, and a set of constraint matches.

Linear Blending

Blended ith frame is the result of linear interpolation of the root and spher-
ical interpolation of the joint angles in corresponding frames in each motion
involved. It gives reasonable results only for the short blends of the similar
motions (small jump and high jump). This simple method does not take
constraints into account.

Timing

Linear blending does not work in case, when corresponding events occur at
different absolute times. Therefore a timewarp curve S(u) is built, in order
to return sets of frame indices, so that the corresponding frames from each
motion match. This algorithm gives better results if the timewarp curve is
continuous and strictly increasing. When these conditions are satisfied, the
inverse functions u(Si) are defined, and for each frame from input motion
they compute corresponding point on the timewarp curve and vice-versa.
They align motions so related frames are as similar as possible and then they
can average skeletal parameters.

Coordinate Frame Alignment

Motion itself does not change when rigid 2D transformations are applied.
They rotate and translate input motions and get resulting motions that have
local coordinate systems as similar as possible. Then they blend related
frames from each motion according to the blend weights. An alignment
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curve A(u) consists of set of transformations that align the frames at each
point of S(u).

Constraint Matches

Pure frame combining need not to satisfy our expectations of the resulting
motion. Especially, if the input motions have several constraints, which are
not taken into account during the computations. In comparison, walking
and running have different types of constraints (contacts with the floor). In
this algorithm they presume that constraints at roughly identical absolute
intervals mean the same constraint. The start and end of the constraints in
global time are parameters and they blend them.

Constructing Registration Curves

They start the construction with a timewarp curve S(u). Another step is
building an alignment curve A(u) around S(u), and finally the constraint
matches are found (mapped into global time). They use a function D(F1,F2)
to determine the ”distance” between frames.

A Coordinate-Invariant Distance Function

They extract neigbourhoods of five frames for each compared frame F1, F2.
Then each frame is converted to a point cloud (points have the same po-
sition as the joints). Finally, minimal sum of squared distances between
related points is computed over all rigid 2D transformations of the second
point cloud.
D(F1,F2) = minΘ,x0,z0

∑n
i=1 wi ‖pi − TΘ,x0,z0 ṕi‖

pi and ṕi are the ith points of both point clouds, TΘ,x0,z0 is a rotation about
vertical axis (y) and consecutive translation in the floor (x0, z0), wi is the
weight of the individual joints.

Creating the Timewarp Curve

They create the timewarp curve from a set of frame correspondences, where a
strictly increasing spline is being fit. Then a distance function is used to fill a
grid where frames from the first and second motion are compared each other.
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Each cell represents a distance between corresponding frames. Afterwards,
dynamic timewarping algorithm is applied in order to find a minimal-cost
connecting path and this path is optimal timealigment starting and ending
at the bounding cells. Following properties should be satisfied : continuity,
clausality and slope limit.

Creating the Alignment Curve

Each corresponding frames have specific rigid 2D transformation Θi, x0i
, z0i

that aligns the second frame to the first frame.They fit a 3D quadratic spline
to these transformations and the result is an alignment curve
A(u)=(identity transformation(A1(u) = I), (A2(u) = Θ(u), x0(u), z0(u)))

Identifying Constraint Matches

They map the interval of each constraint into standard time frame via the
timewarp curve, and then create constraint matches according to :
1. Each constraint match must consist of exactly one constraint from each
motion
2. Union of all constraint intervals must create a single continuous interval
in each constraint match

Blending With Registration Curves

Creating a single frame B(ti):
1. Determine a position S(ui) on the timewarp curve
2. Position and orient the frames at S(ui).
3. Combine the frames based on the blending weights w(ti).
4. Determine the constraints on the resulting frame

Advancing Along the Timewarp Curve

For advancing ∆t units of time, they pick ∆u = ui − ui − 1 such that
Sj(ui − 1 + ∆u)− Sj(ui − 1) = ∆t. Hence du

dt
= du

dSj
. For general w(t) :

du
dt

=
∑k

j=1 wj(t)
du
dSj
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Positioning and Orienting Frames

Extracted frame Mj(Sj(ui)) from the j-th motion is transformed by Aj(ui).
Now they try to find rigid 2D transformation T (ti), such that T (ti)Aj(ui)
would be the total transformation applied to Mj(Sj(ui)). They average votes
for T (ti) from each motion according to the blend weights. For averaging they
use ∆T (ti) represented as parameter set Θj, (xj, zj).

Hence T (ti) =
{∑

j wjΘj, (
∑

j wjxj,
∑

j wjzj)
}

Making the Blended Frame

From transformed frames they compute the resulting frame from weigthed
average of the root positions and joint orientations. Similarly they compute

IM = [
∑

wiC
s
i ,
∑

wiC
e
i ]

where [Cs
i , C

e
i ] is interval where i-th constraint Ci of constraint match M

is valid. When ui is inside this interval, Ci is included to the blend frame.

Transitions

Firstly, they set the length of the transition (parameter h is the half length)
and two frames M1(f1), M2(f2) from each motion. These frames are in the
center of the transition. Obviously, the entire length of the transition is then
set to 2h+1 frames. Now they use dynamic timewarping on M1(f1) and
M2(f2). They compute

u0 = 1
2
(u(S1(f1)) + u(S2(f2)))

from M1(f1), M2(f2) to find the beginning S(u0) of the transition. Con-
sequently, h frames in backward direction and h frames in forward direction
are computed using blending weights from (0,1) to (1,0).
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3 Software Implementation

This part deals with software implementation of the presented work. Here
we describe program architecture, its features, platforms, programming lan-
guages we use, problems occurring by coding and implemented user interface.

3.1 Information about program

Purpose

We called our program ”Motion Blender” because the main purpose of it is
to demonstrate realistic motion blending. Motion Blender allows us to blend
arbitrary human motions and to save the result as standard Biovision file.
Blending is performed semi-automatically, the user can edit the resulting
motion and so he takes a closer look in the theory of human motion repre-
sentation in computers. Another purpose of Motion Blender is that we can
get a brand new high-fidelity motion in a few seconds instead of using motion
capture technology.

Features

Motion Blender displays a motion represented by the standard types of Bio-
vision motion files like .bvh/.bva .
One of the most important features is the comparison of two blending algo-
rithms, standard version of registration curves and our upgraded version with
dual quaternions. The result of the blending is not only blended motion, but
also a graph, a few tables and other statistics created by blending algorithm.
Program allows adding some small changes by editing in each frame, to make
specific motion.
In the future, we see possible upgrades of this program in adding other file
formats, blending algorithms, making some parametrization of the motion or
setting an arbitrary trajectory of moving skeleton.

Input/Output

As mentioned before, user specifies input motions by loading Biovision mo-
tion files into the program. We have chosen these files because they have
simple structure, it is easy to visualize motions which they represent, and
also because they are standard format and therefore widely supported. There
are two types of these files :

Bva-file is the most simple file format. At each frame there are defined
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nine values representing translation, rotation and scaling for each bone.

Bvh-file defines motion of hierarchical skeleton, so the movement of the
bone depends on the movement of its predecessor. There is defined the num-
ber of frames and the length of frame. Motion is represented by the value
for each channel from the hierarchical part. Hierarchical order is important
when we want to edit the motion.

.bvh example :

HIERARCHY
ROOT Hips
{

OFFSET 0.00 0.00 0.00
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT Hip
{

OFFSET 3.430000 0.000000 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Knee
{

OFFSET 0.000000 -18.469999 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Ankle
{

OFFSET 0.000000 -17.940001 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{

OFFSET 0.000000 -3.119999 0.000000
...

MOTION
Frames: 20
Frame Time: 0.033333
0.00 39.68 0.00 0.65 ...



CONTENTS 18

Understanding bvh structure

A bvh file consists of two parts, a header section describing the hierarchy
and initial pose of the skeleton; and a data section containing the motion
data. Examine the example bvh file above. The start of the header section
begins with the keyword ”HIERARCHY”. The following line starts with the
keyword ”ROOT” followed by the name of the root segment of the hierarchy
to be defined. After this hierarchy is described it is permissable to define
another hierarchy, this too would be denoted by the keyword ”ROOT”. A
bvh file many contain any number of skeleton hierarchies. In practice the
number of segments is limited by the format of the motion section, one sam-
ple in time for all segments is on one line of data and this will cause problems
for readers which assume a limit to the size of a line in a file.

The world space is defined as a right handed coordinate system with the
Y axis as the world up vector. You will typically find that BVH skeletal
segments are aligned along the Y or negative Y axis (since the characters
often have a zero pose where the character stands straight up with the arms
straight down to the side).

The motion section begins with the keyword ”MOTION”. This line is fol-
lowed by a line representing the number of frames, this line uses the ”Frames:”
keyword and a number indicating the number of frames that are in the file.
On the line after the frames definition is the ”Frame Time:” definition, this
indicates the sampling rate of the data. In the example BVH file above the
sample rate is given as 0.033333, this is 30 frames a second the usual rate of
sampling in a BVH file.

The rest data contains the actual motion data. Each line represents one
frame of motion data. The numbers appear in the order of the channel spec-
ifications as the skeleton hierarchy was parsed.

Interpretation

To get the position of a segment you first create a transformation matrix
from the local translation and rotation information for that segment. For
any joint segment the translation information will simply be the offset as
defined in the hierarchy section. We get the rotation data from the motion
section. For the root object, the translation data will be the sum of the off-
set data and the translation data from the motion section. The BVH format
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doesn’t account for scales so it isn’t necessary to worry about including a
scale factor calculation.

The easiest way to create the rotation matrix is to create 3 individual rota-
tion matrices, one for each axis of rotation. Then concatenate the matrices
from left to right Y, X and Z.

vR = vYXZ

Another solution is computing the rotation matrix directly.

Remaining part of interpretation is adding the offset information. Poke the
X,Y and Z translation data into the proper locations of the matrix. Once
the local transformation is created then concatenate it with the local trans-
formation of its parent, then its grand parent, and so on.

vM = vMchildMparentMgrandparent

Also the motion, resulting from blending algorithm, has hierarchical def-
inition. The user has again the choice of Biovision file formats to save his
work.

3.2 The Structure of Program

Motion Blender is object-oriented program having several classes and using
a few graphic and mathematical libraries. It has user friendly API and so
the user need not to be trained to use it. Some of these components are
described below.

Development Environment

As for a programming language we choose Delphi (object oriented Pascal).
Rendering is provided by OpenGL. The reason why we have chosen these
languages instead of the others is simple, the application is fast, consistent,
multiplatform, both languages are well-known and also our familiarity with
them is at the higher level.

User Interface

Application window consists of scene window, auxiliary window, stats win-
dow, property panel, tool panel and main menu.
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Scene window displays the particular motion of the skeleton. It is a standard
3D OpenGL scene with 3 coordinate arrows and with planar grid represent-
ing the ground. Orientation of the scene is modified by user with the mouse.
With the mouse can user also select the joints at the skeleton, while editing
the motion. The skeleton is as simple as possible in order to make the scene
continuous and more flexible.

Auxiliary window helps user to select joints in case when particular joint
is hidden by another one and it is difficult to select it directly from the scene.
This window displays static skeleton with all joints, and the selection of some
joint also means the selection of that joint at the scene.

Stats window displays detailed statistics of current blending. Not only ta-
bles, but also histograms and other important data are presented here.

Property panel is situated at the bottom of the application window. Main
application properties are depicted there, such as actual frame, coordinates
of the mouse cursor, selected joint, status of blending process, etc.

Tool panel is situated to the left side of the application window. There
are control buttons, which adjust the scene and motion properties used for
editing and viewing the motion.

Main menu like in the other programs offers the whole functionality of the
program, including open, save buttons, buttons for blending statistics overview
and other.

Model

Sketch of the class diagram of Motion Blender :

Source code overview

Units :

Unit1.pas
- interface between GUI and motion classes (forms, events, buttons)

TFileBVH.pas
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Figure 3: Class Diagram

- implementation of motion classes, especially parsing of bvh file (hierarchi-
cal and data part), creating of data structures and using them in order to
visualize motion data

MyGLInit.pas
- auxiliary unit with some helpful openGL functions for scene inicialization

Classes :

TJoint
- basic class, creates a node in the skeleton tree, carries information about
its name, offset, rotations and pointers to its children and parent
- special method extends the array of descendants

TFrame
- carries information from data part in bvh file, where each line means ex-
actly one frame
- included data represent the channels of joints (mostly 6 decimal places).

TAnimation
- except name, it has also an array of frames which correspond to the par-
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ticular animation

TSkeleton
- carries information about its global position, frame duration (in sec.),
pointer to the root, number of joints, currently rendered frame, number of
frames and animation object
- special method displays skeleton in actual frame at the global position

Programming features

Pointers
- we implement them and it minimizes memory in use

Recursion
- recursively defined skeleton in bvh file forces us to use this technique, ad-
vantage is partial support in openGL renderer

Comments
- we use English

Data structures

text file
- bvh file

common tree
- we keep hierarchical skeleton information there (no n-ary tree allowed, be-
cause joint can have multiple children)

openGL matrix stack
- we use PushMatrix and PopMatrix for recursive joints and bones rendering

Encountered problems

1. In bvh-files occur unconsistent numric data separators, the most of files
use space, but we have met also with tab as separator.

Solution :
we take the first character which succeeds the ’OFFSET’ at the 4th line
in bvh file, this character represents the separator used in the whole file.
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2. Applying parent’s transformations before actual joint’s transformations
in recursive rendering process.

Solution :
we use PushMatrix and PopMatrix in the proper order (method display
in TSkeleton class)

3. It is necessary to apply firstly the offset and secondly rotations at in-
dividual joint. It has been a problem in our recursion.

Solution :
We send parent’s rotations as parameters and sending three nulls for
initial rotations ensure that the offset executes allways before rotations
at individual joint.
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4 Experiments and Verification

We perform experiments on an AMD Athlon PC (2GHz processor and 1GB
memory). As input files we use free bvh files, which were used also in other
similar works for testing and experiments. This allows us to compare time
performance of registration curves with some other algorithms, which were
tested in the past. Thus the identical experimental data provide us the pos-
sibility to choose, which method gives more plausible and realistic animation.

Another criteria for our testing is the robustness of the method. We test
which classes of human moves can be synthesized, for which motions it gives
a non-realistic results and also for which motions it is impossible to create
transition with this algorithm.

Verification is performed by the human eye, because the computer can
not decide if the motion has needed visual form (it is not accomodated to
the human motion).
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5 Conclusion and Future work
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6 Glossary

Retargeting
applying motion data captured from one person to a virtual person of a dif-
ferent size

Inverse Kinematics
the process of computing the pose of a human body from a set of constraints

End effector
joint with no child
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